- 6.2 分布式锁
- 6.2.1 进程内加锁
- 6.2.2 trylock
- 6.2.3 基于Redis的setnx
- 6.2.4 基于ZooKeeper
- 6.2.5 基于etcd
- 6.2.7 如何选择合适的锁
6.2 分布式锁
在单机程序并发或并行修改全局变量时,需要对修改行为加锁以创造临界区。为什么需要加锁呢?我们看看在不加锁的情况下并发计数会发生什么情况:
package mainimport ("sync")// 全局变量var counter intfunc main() {var wg sync.WaitGroupfor i := 0; i < 1000; i++ {wg.Add(1)go func() {defer wg.Done()counter++}()}wg.Wait()println(counter)}
多次运行会得到不同的结果:
❯❯❯ go run local_lock.go945❯❯❯ go run local_lock.go937❯❯❯ go run local_lock.go959
6.2.1 进程内加锁
想要得到正确的结果的话,要把对计数器(counter)的操作代码部分加上锁:
// ... 省略之前部分var wg sync.WaitGroupvar l sync.Mutexfor i := 0; i < 1000; i++ {wg.Add(1)go func() {defer wg.Done()l.Lock()counter++l.Unlock()}()}wg.Wait()println(counter)// ... 省略之后部分
这样就可以稳定地得到计算结果了:
❯❯❯ go run local_lock.go1000
6.2.2 trylock
在某些场景,我们只是希望一个任务有单一的执行者。而不像计数器场景一样,所有goroutine都执行成功。后来的goroutine在抢锁失败后,需要放弃其流程。这时候就需要trylock了。
trylock顾名思义,尝试加锁,加锁成功执行后续流程,如果加锁失败的话也不会阻塞,而会直接返回加锁的结果。在Go语言中我们可以用大小为1的Channel来模拟trylock:
package mainimport ("sync")// Lock try locktype Lock struct {c chan struct{}}// NewLock generate a try lockfunc NewLock() Lock {var l Lockl.c = make(chan struct{}, 1)l.c <- struct{}{}return l}// Lock try lock, return lock resultfunc (l Lock) Lock() bool {lockResult := falseselect {case <-l.c:lockResult = truedefault:}return lockResult}// Unlock , Unlock the try lockfunc (l Lock) Unlock() {l.c <- struct{}{}}var counter intfunc main() {var l = NewLock()var wg sync.WaitGroupfor i := 0; i < 10; i++ {wg.Add(1)go func() {defer wg.Done()if !l.Lock() {// log errorprintln("lock failed")return}counter++println("current counter", counter)l.Unlock()}()}wg.Wait()}
因为我们的逻辑限定每个goroutine只有成功执行了Lock才会继续执行后续逻辑,因此在Unlock时可以保证Lock结构体中的channel一定是空,从而不会阻塞,也不会失败。上面的代码使用了大小为1的channel来模拟trylock,理论上还可以使用标准库中的CAS来实现相同的功能且成本更低,读者可以自行尝试。
在单机系统中,trylock并不是一个好选择。因为大量的goroutine抢锁可能会导致CPU无意义的资源浪费。有一个专有名词用来描述这种抢锁的场景:活锁。
活锁指的是程序看起来在正常执行,但实际上CPU周期被浪费在抢锁,而非执行任务上,从而程序整体的执行效率低下。活锁的问题定位起来要麻烦很多。所以在单机场景下,不建议使用这种锁。
6.2.3 基于Redis的setnx
在分布式场景下,我们也需要这种“抢占”的逻辑,这时候怎么办呢?我们可以使用Redis提供的setnx命令:
package mainimport ("fmt""sync""time""github.com/go-redis/redis")func incr() {client := redis.NewClient(&redis.Options{Addr: "localhost:6379",Password: "", // no password setDB: 0, // use default DB})var lockKey = "counter_lock"var counterKey = "counter"// lockresp := client.SetNX(lockKey, 1, time.Second*5)lockSuccess, err := resp.Result()if err != nil || !lockSuccess {fmt.Println(err, "lock result: ", lockSuccess)return}// counter ++getResp := client.Get(counterKey)cntValue, err := getResp.Int64()if err == nil {cntValue++resp := client.Set(counterKey, cntValue, 0)_, err := resp.Result()if err != nil {// log errprintln("set value error!")}}println("current counter is ", cntValue)delResp := client.Del(lockKey)unlockSuccess, err := delResp.Result()if err == nil && unlockSuccess > 0 {println("unlock success!")} else {println("unlock failed", err)}}func main() {var wg sync.WaitGroupfor i := 0; i < 10; i++ {wg.Add(1)go func() {defer wg.Done()incr()}()}wg.Wait()}
看看运行结果:
❯❯❯ go run redis_setnx.go<nil> lock result: false<nil> lock result: false<nil> lock result: false<nil> lock result: false<nil> lock result: false<nil> lock result: false<nil> lock result: false<nil> lock result: false<nil> lock result: falsecurrent counter is 2028unlock success!
通过代码和执行结果可以看到,我们远程调用setnx实际上和单机的trylock非常相似,如果获取锁失败,那么相关的任务逻辑就不应该继续向前执行。
setnx很适合在高并发场景下,用来争抢一些“唯一”的资源。比如交易撮合系统中卖家发起订单,而多个买家会对其进行并发争抢。这种场景我们没有办法依赖具体的时间来判断先后,因为不管是用户设备的时间,还是分布式场景下的各台机器的时间,都是没有办法在合并后保证正确的时序的。哪怕是我们同一个机房的集群,不同的机器的系统时间可能也会有细微的差别。
所以,我们需要依赖于这些请求到达Redis节点的顺序来做正确的抢锁操作。如果用户的网络环境比较差,那也只能自求多福了。
6.2.4 基于ZooKeeper
package mainimport ("time""github.com/samuel/go-zookeeper/zk")func main() {c, _, err := zk.Connect([]string{"127.0.0.1"}, time.Second) //*10)if err != nil {panic(err)}l := zk.NewLock(c, "/lock", zk.WorldACL(zk.PermAll))err = l.Lock()if err != nil {panic(err)}println("lock succ, do your business logic")time.Sleep(time.Second * 10)// do some thingl.Unlock()println("unlock succ, finish business logic")}
基于ZooKeeper的锁与基于Redis的锁的不同之处在于Lock成功之前会一直阻塞,这与我们单机场景中的mutex.Lock很相似。
其原理也是基于临时Sequence节点和watch API,例如我们这里使用的是/lock节点。Lock会在该节点下的节点列表中插入自己的值,只要节点下的子节点发生变化,就会通知所有watch该节点的程序。这时候程序会检查当前节点下最小的子节点的id是否与自己的一致。如果一致,说明加锁成功了。
这种分布式的阻塞锁比较适合分布式任务调度场景,但不适合高频次持锁时间短的抢锁场景。按照Google的Chubby论文里的阐述,基于强一致协议的锁适用于粗粒度的加锁操作。这里的粗粒度指锁占用时间较长。我们在使用时也应思考在自己的业务场景中使用是否合适。
6.2.5 基于etcd
etcd是分布式系统中,功能上与ZooKeeper类似的组件,这两年越来越火了。上面基于ZooKeeper我们实现了分布式阻塞锁,基于etcd,也可以实现类似的功能:
package mainimport ("log""github.com/zieckey/etcdsync")func main() {m, err := etcdsync.New("/lock", 10, []string{"http://127.0.0.1:2379"})if m == nil || err != nil {log.Printf("etcdsync.New failed")return}err = m.Lock()if err != nil {log.Printf("etcdsync.Lock failed")return}log.Printf("etcdsync.Lock OK")log.Printf("Get the lock. Do something here.")err = m.Unlock()if err != nil {log.Printf("etcdsync.Unlock failed")} else {log.Printf("etcdsync.Unlock OK")}}
etcd中没有像ZooKeeper那样的Sequence节点。所以其锁实现和基于ZooKeeper实现的有所不同。在上述示例代码中使用的etcdsync的Lock流程是:
- 先检查
/lock路径下是否有值,如果有值,说明锁已经被别人抢了 - 如果没有值,那么写入自己的值。写入成功返回,说明加锁成功。写入时如果节点被其它节点写入过了,那么会导致加锁失败,这时候到 3
- watch
/lock下的事件,此时陷入阻塞 - 当
/lock路径下发生事件时,当前进程被唤醒。检查发生的事件是否是删除事件(说明锁被持有者主动unlock),或者过期事件(说明锁过期失效)。如果是的话,那么回到 1,走抢锁流程。
值得一提的是,在etcdv3的API中官方已经提供了可以直接使用的锁API,读者可以查阅etcd的文档做进一步的学习。
6.2.7 如何选择合适的锁
业务还在单机就可以搞定的量级时,那么按照需求使用任意的单机锁方案就可以。
如果发展到了分布式服务阶段,但业务规模不大,qps很小的情况下,使用哪种锁方案都差不多。如果公司内已有可以使用的ZooKeeper、etcd或者Redis集群,那么就尽量在不引入新的技术栈的情况下满足业务需求。
业务发展到一定量级的话,就需要从多方面来考虑了。首先是你的锁是否在任何恶劣的条件下都不允许数据丢失,如果不允许,那么就不要使用Redis的setnx的简单锁。
对锁数据的可靠性要求极高的话,那只能使用etcd或者ZooKeeper这种通过一致性协议保证数据可靠性的锁方案。但可靠的背面往往都是较低的吞吐量和较高的延迟。需要根据业务的量级对其进行压力测试,以确保分布式锁所使用的etcd或ZooKeeper集群可以承受得住实际的业务请求压力。需要注意的是,etcd和Zookeeper集群是没有办法通过增加节点来提高其性能的。要对其进行横向扩展,只能增加搭建多个集群来支持更多的请求。这会进一步提高对运维和监控的要求。多个集群可能需要引入proxy,没有proxy那就需要业务去根据某个业务id来做分片。如果业务已经上线的情况下做扩展,还要考虑数据的动态迁移。这些都不是容易的事情。
在选择具体的方案时,还是需要多加思考,对风险早做预估。
